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Abstract
In this work we study the microwave photoconductivity of a two-dimensional
electron system (2DES) in the presence of a magnetic field and a two-
dimensional modulation (2D). The model includes the microwave and Landau
contributions in a non-perturbative exact way; the periodic potential is treated
perturbatively. The Landau–Floquet states provide a convenient base with
respect to which the lattice potential becomes time dependent, inducing
transitions between the Landau–Floquet levels. Based on this formalism, we
provide a Kubo-like formula that takes into account the oscillatory Floquet
structure of the problem. The total longitudinal conductivity and resistivity
exhibit strong oscillations, determined by ε = ω/ωc, with ω the radiation
frequency and ωc the cyclotron frequency. The oscillations follow a pattern
with minima centred at ω/ωc = j + 1

2 (l − 1) + δ, and maxima centred at
ω/ωc = j + 1

2 (l − 1) − δ, where j = 1, 2, 3 . . ., δ ∼ 1/5 is a constant
shift and l is the dominant multipole contribution. Negative resistance states
(NRSs) develop as the electron mobility and the intensity of the microwave
power are increased. These NRSs appear in a narrow window region of values
of the lattice parameter (a), around a ∼ lB , where lB is the magnetic length.
It is proposed that these phenomena may be observed in artificially fabricated
arrays of periodic scatterers at the interface of ultraclean GaAs/Alx Ga1−x As
heterostructures.

1. Introduction

The microwave irradiation of two-dimensional electron systems (2DESs) has remarkable
consequences for the transport properties at low magnetic fields. Recently, two experimental
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groups [1–4] reported the unexpected discovery of zero-resistance states (ZRSs) when
high mobility GaAs/Alx Ga1−x As heterostructures in weak magnetic fields were exposed to
millimetre irradiation. Unlike the strong magnetic field regime, the Hall resistance is not
quantized. The magnetoresistance exhibits giant oscillations, periodic in ε = ω/ωc, with
ω the radiation frequency and ωc the cyclotron frequency; the series of minima forms at
ε = j + δ, j = 1, 2, 3. . . ., δ = 1

2 [1, 2], or δ = 1
4 [3, 4]. These discoveries triggered

a large number of experimental [5–9] and theoretical [10–21] studies. According to [13],
ZRSs probably originate from negative resistance states (NRSs); it was argued that negative
resistance induces the formation of current domains, yielding an instability that drives the
system into a ZRS. The existence of NRSs was first predicted in the pioneering work of
Ryzhii [10, 11]. Nowadays, two distinct mechanisms that produce negative longitudinal
conductance are known: (i) the impurity scattering mechanism, which is caused by the disorder
assisted absorption and emission of microwaves [10–18], and (ii) the distribution function
mechanism, according to which the microwave absorption modifies the electron distribution
function, leading to a negative longitudinal conductance [5, 19–21]. A model for the impurity
scattering mechanism was proposed previously by the authors [17, 18]; the model is based
on the fact that the microwave and Landau dynamics can be exactly taken into account,
producing well defined Floquet–Landau states. The disorder effects are treated perturbatively,
inducing transitions between the Floquet–Landau levels. The model reproduces various of the
experimentally observed features, in particular the fact that negative resistance states (ZRSs)
appear only when the electron mobility exceeds a threshold.

Although the experiments described above do not include the effect of periodical potential
modulations, exploring its physical consequences is worthwhile. We can identify at least
three reasons for doing so. (i) The study of both weak [22] and strong [23] periodically
modulated 2DESs in the presence of magnetic fields has led to the discovery of interesting
transport effects, such as commensurability phenomena and transport anisotropies. (ii) The
theoretical method previously developed in [17, 18] is well suited to study this kind of system.
(iii) The use of artificially fabricated arrays of periodic scatterers at the interface of ultraclean
GaAs/Alx Ga1−x As heterostructures [22–25] may allow us to test the predictions made by these
theoretical studies.

In this work we make a theoretical study of the microwave photoconductivity of a 2DES
in the presence of a magnetic field and a two-dimensional modulation. Two theoretical studies
of modulated 2DESs under the combined effects of magnetic and microwave radiation have
recently appeared. Dietel et al [26] considered the photoconductivity in the case of 1D periodic
modulation. The calculation uses first order perturbation theory for both the microwave field as
well as for the periodic potential. Additionally, the calculation is restricted by the following
conditions: the lattice parameter a is small as compared to the cyclotron radius Rc, the
temperature T is large with respect to the periodic strength potential V0, and V0 � h̄ωc. Due
to the unidirectional structure of the modulation the photocurrents parallel and perpendicular to
the modulation are different. The work of Gumbs [27] applies for a strong 2D modulation, but
is linear with respect to the microwave field intensity. His approach made use of the usual Kubo
formula in which the matrix elements are evaluated using the numerically obtained Hofstadter-
type wavefunctions. In this paper we address the case of a 2D modulation under different
conditions; in particular, we explore the possible appearance of negative resistance states.
The Landau and microwave field contributions are exactly taken into account. We analyse
the regime in which the following conditions hold: kT ∼ V0 � h̄ωc, and ωτtr ∼ ωcτtr � 1.
Instead of appealing to the usual Kubo formula, our approach shows that the use of the Floquet–
Landau states determines not only the wavefunctions required to evaluate the matrix elements,
but also leads to a modified Kubo-like formula, in which the oscillations on the density of
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states induce the development of negative resistance states. As a first step we find a unitary
transformation that exactly takes into account the dynamics associated with the Landau and
radiation contributions. As a second step, the periodic potential is added perturbatively. With
respect to the Landau–Floquet states, the periodic potential acts as a coherent oscillating field
which induces transitions between these levels. Based on this formalism, we provide a Kubo-
like expression for the conductance that incorporates the oscillatory Floquet structure of the
system. It is found that both σxx and ρxx exhibit strong oscillations determined by ε = ω/ωc.
NRSs develop for sufficiently high electron mobility and strong microwave power. The model
is used to test chirality effects induced by the magnetic field; calculations are carried out for
various E-field polarizations. Finally, we explore the nonlinear regime in which multiple
photon exchange plays an essential role, as well as the current–voltage characteristics of the
system.

The paper is organized as follows. In section 2 we present the model and the method
that allow us to obtain the exact solution of the Landau microwave system, as well as the
perturbative corrections induced by the periodic potential. In section 3 we develop the
formulation of the linear response theory valid in arbitrary magnetic and microwave fields.
A discussion of relevant numerical calculations is presented in section 4. Section 5 contains a
summary of our main results.

2. The model

Let us consider the motion of an electron in two dimensions subject to a uniform magnetic field
B perpendicular to the plane and a constant electric field Ec, a periodic potential V and driven
by microwave radiation. On the plane the dynamics is governed by the Schrödinger equation

ih̄
∂�

∂ t
= H� = [

H{B,ω} + V (r)
]
�. (1)

Here H{B,ω} is written in terms of the covariant derivative

H{B,ω} = 1

2m∗ Π2, Π = p + eA, (2)

where m∗ is the effective electron mass over the plane that takes into account the effects of the
crystalline atomic structure over the charge carriers. The vector potential A includes all the
contributions of the magnetic, electric and radiation fields:

A = −1

2
r × B + Re

[
εEω

ω
exp{−iωt}

]
+ Ect . (3)

The superlattice potential V (r) is decomposed in a Fourier expansion

V (r) =
∑

mn

Vmn exp

{
i2π

(mx

a
+ ny

b

)}
. (4)

We first consider the exact solution of the microwave driven Landau problem; the periodic
potential effects are later added perturbatively. Throughout this work we shall assume (i) a
weak modulation |V | � h̄ωc and (ii) the clean limit ωτtr ∼ ωc τtr � 1; here τtr is the transport
relaxation time that is estimated using its relation to the electron mobility µ = eτtr/m∗.
Based on these conditions the use of first order perturbation theory in V becomes reasonable.
Furthermore, the second conditions justify the use of a Fermi distribution function evaluated at
the Floquet–Landau quasi-energies; see appendix B.
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The system posed by H{B,ω} can be recast as a forced harmonic oscillator, a problem that
was solved a long time ago by Husimi [28]. Following the formalism developed in [29, 30], we
introduce a canonical transformation to new variables Qµ, Pµ; µ = 0, 1, 2, according to

Q0 = t, P0 = i∂t + eφ + er · E,√
eBQ1 = �y,

√
eB P1 = �x ,√

eBQ2 = �x + eBy,
√

eB P2 = �y − eBx .

(5)

It is easily verified that the transformation is indeed canonical; the new variables obey the
commutation rules: − [Q0, P0] = [Q1, P1] = [Q2, P2] = iB; all other commutators being
zero. The inverse transformation gives x = lB (Q1 − P2), and y = lB (Q2 − P1), where

lB =
√

h̄
eB is the magnetic length. The operators (Q2, P2) can be identified with the generators

of the electric–magnetic translation symmetries [31, 32]. Final results are independent of
the selected gauge. From the operators in equation (5) we construct two pairs of harmonic
oscillator-like ladder operators: (a1, a†

1), and (a2, a†
2) with

a1 = 1√
2

(P1 − iQ1) , a2 = 1√
2

(P2 − iQ2) , (6)

obeying [a1, a†
1 ] = [a2, a†

2 ] = 1, and [a1, a2] = [a1, a†
2] = 0.

It is now possible to find a unitary transformation that exactly diagonalizes H{B,ω}; it yields

W † H{B,ω}W = ωc
(

1
2 + a†

1a1
) ≡ H0, (7)

with the cyclotron frequency ωc = eB/m∗ and the W (t) operator given by

W (t) = exp{iη1 Q1} exp{iξ1 P1} exp{iη2 Q2} exp{iξ2 P2} exp

{
i
∫ t

L dt ′
}
, (8)

where the functions ηi (t) and ξi (t) represent the solutions to the classical equations of motion
that follow from the variation of the Lagrangian

L = ωc

2

(
η2

1 + ζ 2
1

)+ ζ̇1η1 + ζ̇2η2 + elB
[
Ex (ζ1 + η2) + Ey (η1 + ζ2)

]
. (9)

It is straightforward to obtain the solutions to the equation of motion, using the expression for
the electric field E = −∂A/∂ t with A given in (3). Adding a damping term that takes into
account the radiative decay of the quasiparticle, they read

η1 = elB Eω Re

[ −iωεx + ωcεy

ω2 − ω2
c + iω�rad

eiωt

]
, η2 = elB Eω Re

[
εyeiωt

iω

]
+ elB Ec

yt,

ζ1 = elB Eω Re

[
ωcεx + iωεy

ω2 − ω2
c + iω�rad

eiωt

]
, ζ2 = −elB Eω Re

[
εx eiωt

iω

]
− elB Ec

x t .

(10)

According to the Floquet theorem, the wavefunction can be written as �(t) =
exp

(−iEµt
)
φµ(t), where φµ(t) is periodic in time, i.e. φµ(t + τω) = φµ(t), with τω = 2π/ω.

From equation (8) it is noticed that the transformed wavefunction �W = W� contains the
phase factor exp

(
i
∫ t L dt ′). It then follows that the quasienergies and the Floquet modes can

be deduced if we add and subtract to this exponential a term of the form t
τω

∫ τω

0 L dt ′. Hence,
the quasienergies can be readily read off

Eµ = E (0)
µ + Erad; E (0)

µ = h̄ωc(
1
2 + µ),

Erad = e2 E2
ω

[
1 + 2ωc Re(ε∗

x εy)/ω
]

2m∗ [(ω − ωc)
2 + �2

rad

] ,
(11)
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here E (0)
µ are the usual Landau energies, and the induced Floquet energy shift is given by

the microwave energy Erad. The corresponding time-periodic Floquet modes in the (P1, P2)

representation are given by

�µ,k(P) = exp{−i sin (2ωt) F(ω)}φµ(P1)δ(P2 − k), (12)

the index k labels the degeneracy of the Landau–Floquet states, and φµ (P1) is the harmonic
oscillator function in the P1 representation

φµ (P1) = 〈P1 |µ 〉 = 1
√

π1/22µµ!e−P2
1 /2 Hµ (P1) , (13)

Hµ (P1) is the Hermite polynomial and the function F(ω) is given as

F(ω) = ωc

ω

(
eEωlB

ω2 − ω2
c

)2 [
ω2 − ω2

c + 2ω2ε2
x − 2ω2

cε
2
y + Re(ε∗

x εy)

ωωc

(
2ω4 − ω2ω2

c + ω4
c

)
]

.

(14)

Let us now consider the complete Hamiltonian including the contribution from the periodic
potential. When the transformation induced by W (t) is applied, the Schrödinger equation in (1)
becomes

P0�
(W ) = H0�

(W ) + VW (t)�(W ), (15)

where �(W ) = W (t)� and VW (t) = W (t)V (r)W−1(t). Notice that the periodic potential
acquires a time dependence brought by the W (t) transformation. The problem is now solved
in the interaction representation using first order time dependent perturbation theory. In the
interaction representation �

(W )
I = exp{iH0t}�(W ), and the Schrödinger equation becomes

i∂t�
(W )

I = {VW (t)}I �
(W )

I . (16)

The equation has the solution �
(W )
I (t) = U(t − t0)�

(W )
I (t0), where U(t) is the evolution

operator. To first order in perturbation theory it is given by the expression

U(t) = 1 − i
∫ t

−∞
dt ′ [W †(t ′)V (r)W (t ′)

]
I
. (17)

The interaction is adiabatically turned off as t0 → −∞, in which case the asymptotic states
are selected as the Landau–Floquet eigenvalues of H0, i.e. |�(W )

I (t0)〉 → |µ, k〉. Utilizing the
explicit expression for the W transformation in (8) and after a lengthly calculation the matrix
elements of the evolution operator can be worked out as

〈µ, k| U(t)
∣
∣ν, k ′〉 = δµνδkk′ −

∑

l

∑

mn

δ
(
k − k ′ + lBq(y)

n

) eilB q(x)
m (k+lB q(y)

n /2)ei(Eµν+ωl)t

Eµν + ωl + ωE
C (l)

µν,mn,

(18)

where ωE = el2
B(q(y)

n Ec
x − q(x)

m Ec
y), and the explicit expression for C (l)

µν,mn is given by

C (l)
µ,ν,mn = l2

B Vmn Dµν(q̃mn)

(
�mn

i|�mn|
)l

Jl (|�mn|) . (19)

In the previous expressions the discrete pseudomomenta are given as

q(x)
m = 2πm/a, q(y)

n = 2πn/b,

q̃mn = ilB(q(x)
m − iq(y)

n )/
√

2,
(20)
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Jl denote the Legendre polynomials and Dµν is given in terms of the generalized Laguerre
polynomials according to

Dνµ (q̃) = 〈ν |D (q̃)| µ〉 = e− 1
2 |q̃|2






(−q̃∗)µ−ν

√
ν!
µ! Lµ−ν

ν

(
|q̃|2

)
, µ > ν,

q̃ν−µ

√
µ!
ν! Lν−µ

µ

(
|q̃|2

)
, µ < ν,

(21)

and

�mn = ωcl2
BeEω

ω
(
ω2 − ω2

c + iω�rad
)
[
ω
(
q(x)

m ex + q(y)
n ey

)+ iωc
(
q(x)

m ey − q(y)
n ex

)]
. (22)

Summarizing, the solution to the original Schrödinger equation in equation (1) has been
achieved by means of three successive transformations:

|�µ,k(t)〉 = W † exp{−iH0t}U(t − t0)|µ, k〉; (23)

the explicit expressions for H0, W , and U are given in equations (7), (8), and (18) respectively.

3. Kubo formula for Floquet states

The usual Kubo formula for the conductivity must be modified in order to include the Floquet
dynamics. In the presence of an additional dc electric field the complete Hamiltonian is
HT = H + Vext, where H is the Hamiltonian in equation (1) and Vext = 1

m Π · Aext, with
Aext = E0

ω
sin (�t) exp

(−η|t|). The static limit is obtained with � → 0, and η represents the
rate at which the perturbation is turned on and off. In order to calculate the expectation value of
the current density, we need the density matrix ρ(t), which obeys the von Neumann equation

ih̄
∂ρ

∂ t
= [HT , ρ] = [H + Vext, ρ] . (24)

We write to first order ρ = ρ0 + �ρ, where the leading term satisfies the equation

ih̄
∂ρ0

∂ t
= [H, ρ0] . (25)

In agreement with equation (23), �ρ is transformed to

�̃ρ(t) = U †
I (t − t0) exp{iH0t}W (t)�ρ(t)W †(t) exp{−iH0t}UI (t − t0). (26)

In terms of the transformed density matrix �̃ρ(t), equation (24) becomes

ih̄
∂�̃ρ

∂ t
=
[
Ṽext, ρ̃0

]
, (27)

where Ṽext and ρ̃0 are the external potential and quasi-equilibrium density matrix transformed
in the same manner as �̃ρ in equation (26). The transformed quasi-equilibrium density matrix
is assumed to have the form ρ̃0 = ∑

µ |µ〉 f (Eµ)〈µ|, where f (Eµ) is the usual Fermi function
and Eµ the Landau–Floquet levels. The justification for selecting a Fermi–Dirac distribution
in the quasi-energy states is presented in appendix B. If we consider the region in which
the conditions τω � τtr � τin hold, then the elastic and inelastic relaxation processes can
be neglected as compared to the microwave field effects. The solution of the Boltzmann
equation yields, a Fermi–Dirac distribution in the quasi-energy states [17]; see appendix B.
It is straightforward to verify that this selection guarantees that the quasi-equilibrium condition
in (25) is verified. Using the results in equations (23) and (26), the expectation value of the
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density matrix can now be easily obtained from the integration of equation (27) with the initial
condition �ρ(t) → 0 as t → −∞ giving for t < 0
〈
�µ,k

∣
∣�ρ(t)

∣
∣�ν,k′

〉 = 〈µ, k| �̃ρ(t)
∣
∣ν, k ′〉

= eE0

2
·
∫ t

−∞

[
ei(�−iη)t ′

�
fµν

〈
�µ,k

∣∣Π(t ′)
∣∣�ν,k′

〉+ (� → −�)

]

, (28)

where the definition fµν = f (Eµ)− f (Eν) was used. The expectation value for the momentum
operator is explicitly computed with the help of equations (8), (18), and (23), retaining terms
linear in the modulation potential, and after a lengthy calculation it yields
〈
�µk

∣
∣Πi |�νk′ 〉 = √

eB
∑

l

∑

mn

δ
(
k − k ′ + lBq(y)

n

)
eilB q(x)

m (k+lB q(y)
n /2)ei(Eµν+ωl−iη)t �(l)

µν,mn( j).

(29)

Here the following definitions were introduced: Eµν = Eµ − Eν , a j = b j = 1 if j = x ,
a j = −b j = −i if j = y, and �(l)

µν,mn( j) is given by

�(l)
µν,mn( j) = − 1√

2

[
a j q̃∗

mnC (l)
µν,mn

Eµν − ωc + ωl − iη
+ b j q̃mnC (l)

µν,mn

Eµν + ωc + ωl − iη

]

, (30)

the expression for C (l)
µν,mn is given in (19). It should be pointed out that in principle there

is a zero-order contribution (independent of V ) to the expectation value of the momentum
operator in (29); this would contribute to the direct cyclotron resonance heating that has a
single peak around ω ∼ ωc. However, this contribution has proved to be negligible [17], so it
will be altogether omitted. Utilizing these results, the time integral in equation (28) is readily
carried out. The current density to first order in the external electric field can now be calculated

from 〈J(t, r)〉 = Tr
[
�̃ρ(t)J̃(t)

]
; the resulting expression represents the local density current.

Here we are concerned with the macroscopic conductivity tensor that relates the spatially and
time averaged current density j = (τωA)−1

∫ τω

0 dt
∫

d2x〈J(t, r)〉 to the averaged electric field;
here A is the area of the system (it is understood that A → ∞). Assuming that the external
electric field points along the x-axis the macroscopic conductivity can be worked out. The total
conductivity is given by a sum σxi = σ D

xi + σ
(MM)

xi ; the dark conductivity is calculated when
both the modulation and microwave radiation are switched off as

σ D
xi = e2ω2

c

4h̄i

∑

µν

{
fµν

�

[
aiµδµ,ν+1

Eµν + � − iη
+ biνδµ,ν−1

Eµν + � − iη

]
+ (� → −�)

}
, (31)

whereas the microwave–modulation (MM) induced conductivity is worked out as

σ
(MM)
xi = e2ω2

c

4h̄i

∑

µν

{
fµν

�

∑

mn

∑

l

�(l)
µν,mn(i)�

(−l)
νµ,mn(x)

Eµν + ωl + � − iη
+ (� → −�)

}

. (32)

Selecting i = x or i = y the longitudinal and Hall conductivities can be selected. The
denominators on the RHS of the previous equations can be related to the advanced and
retarded Green’s functions G±

µ(E) = 1/
(E − Eµ ± iη

)
. To make further progress the real

and absorptive parts of the Green’s functions are separated, taking the limit η → 0 and using
limη→0 1/(E − iη) = P1/E + iπδ(E), where P indicates the principal-value integral. As usual,
the real and imaginary parts contribute to the Hall and longitudinal conductivities respectively.
However, the previous expression would present a singular behaviour that is an artifact of
the η → 0 limit. This problem is solved by including the disorder broadening effects. A
formal procedure to obtain the Green function requires a self-consistent calculation using the
Dyson equation for the self-energy with the magnetic and microwave fields, impurity, phonon,
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and other scattering effects included. A detailed calculation of Im Gµ(E) incorporating all
these elements is beyond the scope of the present work. Instead, we choose a Gaussian-type
expression for the density of states. This expression can be justified within a self-consistent
Born calculation that incorporates the magnetic field and disorder effects [33–35], hence the
density of states for the µ-Landau level is represented as

Im Gµ(E) =
√

π

2�2
µ

exp
[−(E − Eµ)2/(2�2

µ)
]
, (33)

with a broadening width given by

�2
µ = 2βµh̄2ωc

(πτtr)
, (34)

the parameter βµ takes into account the difference of the transport scattering time τtr

determining the mobility µ, from the single-particle lifetime τs. In the case of short-range
scatterers τtr = τs and βµ = 1. An expression for βµ, suitable for numerical evaluation, that
applies for a long-range screened potential is given in [17]; βµ decreases for higher Landau
levels; e.g. β0 ≈ 50, β50 ≈ 10.5.

The static limit with respect to the external field is obtained taking � → 0 in equations (31)
and (32). In what follows results are presented for the microwave–modulation (MM) induced
longitudinal conductivity; the dark conductivities as well as the MM Hall conductivity are
quoted in the appendix. Hence the MM induced longitudinal conductance is worked out as

σ (MM)
xx = e2l2

B

π h̄

∫
dE
∑

µν

∑

l

∑

mn

Im Gµ (E) B(l) (E, Eν) |q(y)
n Jl (|�mn|) Vmn Dµν(q̃mn)|2, (35)

where the following function has been defined:

B(l)(E, Eν) = − d

dE0

{
[

f (E + lω + ωE + E0) − f (E)
]

Im Gν(E + lω + ωE + E0)

}∣∣
∣
∣
E0=0

. (36)

Notice that σ (MM)
xx contains a contribution σ (M)

xx that depends only on the modulation potential;
it can be extracted from equation (35) if the microwave field is switched off.

As usual the resistivities are obtained from the expression ρxx = σxx /(σ
2
xx + σ 2

xy) and
ρxy = σxy/(σ

2
xx + σ 2

xy). The relation σxy � σxx holds in general, hence it follows that
ρxx ∝ σxx , and the longitudinal resistivity follows the same oscillation pattern as that of σxx .

4. Results

The expression in equation (35) can be numerically evaluated after the Fourier components Vmn

of the periodic potential are specified. We shall consider a square lattice potential of the form

V (r) = V0

[
cos

(
2πx

a

)
+ cos

(
2πy

a

)]
. (37)

In our calculations it is assumed that a superlattice is cleaved at the interface of an
ultraclean GaAs/Alx Ga1−xAs heterostructure with high electron mobility, µ ∼ 0.5–2.5 ×
107 cm2 V−1 s−1; the periodic potential has the form given in (37) with parameters a ∼ 20–
200 nm and V0 = 0.05 meV. The other parameters of the sample are estimated as effective
electron mass m∗ = 0.067me, Fermi energy εF = 10 meV, electron density n = 3×1011 cm−2,
and temperature T = 1 K. For the applied external fields we consider magnetic fields in the
range 0.05–0.4 T and microwave radiation with frequencies f ∼ 10–200 GHz, and field
intensity | �Eω| ∼ 1–100 V cm−1, that corresponds to a microwave power characterized by
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Figure 1. Magnetoresistivity ρxx versus B without radiation and modulation (dotted line) and
under microwave radiation plus periodic modulation (solid line). The dashed line corresponds to
the total Hall resistance ρxy , whereas the inset shows the results for the subtracted Hall resistance
�ρxy = ρxy − ρdark

xy . The microwave polarization is linear transverse (with respect to the current),

with f = 100 GHz and α = cε0|Eω|2/(m∗ ω3) = 0.4. The other parameters are selected as
follows: a = 25 nm, V0 = 0.05 meV, m∗ = 0.067me, µ ≈ 2.5 × 107 cm2 V−1 s−1, εF = 10 meV,
T = 1 K.

the dimensionless quantity α ∼ cε0|Eω|2/(m∗ω3) that varies in the range α ∼ 0.01–2.
The relaxation time τtr in equation (33) is related to the zero-field electron mobility through
µ = eτtr/m∗, and βµ ≈ 10.5, a value that is justified for large filling factors µ ≈ 50 [17]. A
detailed account of the electron dynamics requires us to distinguish between various lifetimes;
following reference [36], �rad in equation (10) is related to the radiative decay width that
is interpreted as coherent dipole re-radiation of electromagnetic waves by the oscillating 2D
electrons excited by microwaves; it is given by �rad = 2π2h̄ne2/ (3ε0c m∗). In all the
examples, except in figure 8, we consider the linear regime; the dc electric field is included
only through the Kubo formula, hence ωE = 0 in equations (35) and (36). In the case of
figure 8 the non-linear dc electric field effects are included using the solution to the classical
equations of motion with both ac and dc electric fields (10).

Plots of the longitudinal and Hall resistivities as a function of the magnetic field intensity
are displayed in figure 1. The total longitudinal resistance shows a strong oscillatory behaviour
with distinctive NRS; this behaviour is contrasted with the dark contributions that present only
the expected Shubnikov–de–Hass oscillations. The total Hall resistance presents a monotonic
behaviour, yet perceptible microwave induced oscillations in the Hall effect can be observed if
one considers �ρxy = ρxy − ρdark

xy ; see the inset.
Figure 2 displays plots of the total longitudinal conductivity as a function of ε = ω/ωc.

σxx shows a strong oscillatory behaviour, with distinctive negative conductance states. The
periodicity as well as the number of NCSs depend on the intensity of the microwave radiation.
For weak microwave intensity (α = 0.01), σxx is positive with a moderate oscillatory
behaviour. As the microwave intensity increases (α = 0.1), strong oscillations in σxx are
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Figure 2. Longitudinal conductivity versus ε = ω/ωc for three values of the microwave power
intensity: α = 0.01 (dashed line), α = 0.1 (dotted line), and α = 0.4 (continuous line). The other
parameters have the same values as in figure 1.

observed with minimum centred at ε ∼ 1.2, ε ∼ 2.2, ε ∼ 3.2, and ε ∼ 4.2; only the two
last minima correspond to NCSs. A further increase in the microwave intensity (α = 0.4)
yields several NCSs. In the region ε � 3 the oscillation period is reduced to ε = 1

2 .
In general, it is observed that σxx vanishes at ω/ωc = j for j integer. The oscillations
follow a pattern with minima centred at ω/ωc = j + 1

2 (l − 1) + δ, and maxima centred at
ω/ωc = j + 1

2 (l − 1) − δ, where j = 1, 2, 3 . . . , δ ≈ 1/5, and l is the dominant multipole
that contributes to the conductivity in equation (35). For moderate microwave power the
l = 1 ‘one photon’ stimulated processes dominate, corresponding to what is observed for
α = 0.1. For α = 0.4 the results can be interpreted as the results of ‘one and two photon’
processes (l = 1 and 2). To understand the origin of NCSs it is noticed from equation (35)
that, for small microwave power, σω

xx is dominated by the l = 0 Bessel term, that is always
positive. Negative conductance states arise when the l = 1 and 0 terms become comparable:
|J0 (|�|) |2 B(0) ∼ |J1 (|�|) |2 B(1). A simple analysis shows that this condition is fulfilled for
|�| ∼ 0.1. Using the expression in equation (22), the condition to produce NCSs can be
estimated as |Eω| > Eth, where Eth ≈ 0.1a�rad/

√
8elB . For the parameter used in figure 2,

Eth ≈ 10 V cm−1 or αth ≈ 0.15, in good agreement with the results displayed by the plots.
Next we consider the dependence of ρxx on the lattice parameter a. Plots of ρxx versus

ε = ω/ωc for various selections of a are presented in figure 3. NRSs appear only in a
narrow window of values of a around a∗, for which the oscillation amplitude of ρxx attains
its maximum. In the present case a∗ ≈ 25 nm. This behaviour follows from the structure
of the MM induced longitudinal conductance σ MM

xx given in (35). Taking into account the
form of Dµν(q̃mn) in equation (21), the leading dependence of σ MM

xx on the lattice parameter
is given approximately by σ MM

xx ∼ 1
a4 exp(−|q̃|2/2). According to equation (20), q̃ ∝ 1/a;

consequently, the MM contribution is significant only when a is near to a∗, that is determined as
a∗ ∼ πlB/

√
2. This estimation is in very good agreement with the numerical results presented

in the plots.
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Figure 3. Longitudinal resistivity versus ε = ω/ωc for three values of the lattice parameter:
a = 22 nm (dotted line), a = 25 nm (continuous line), and a = 35 nm (dashed line). The
microwave intensity is α = 0.4 and the other parameters have the same values as in figure 1.

Negative magnetoresistance requires ultra-clean samples; the phenomenon appears when
the electron mobility exceeds a threshold µth. Figure 4 displays ρxx versus ω/ωc plots for
three selected values of µ. For µ ≈ 0.5 × 107 cm2 V−1 s−1 an almost linear behaviour ρxx is
clearly depicted (except in the Shubnikov–de Hass region). As the electron mobility increases
to µ ≈ 1.5 × 107 cm2 V−1 s−1, the resistance oscillations are clearly observed; however,
several NRSs only appear when the mobility is increased to µ ≈ 2.5 × 107 cm2 V−1 s−1.
Equations (35) and (36) contain the main ingredients that explain the huge increase observed
in the longitudinal conductance (and resistance) when the periodically modulated system is
irradiated by microwaves and its critical dependence on the electron mobility. In the standard
expression for the Kubo formula there are no Floquet replica contributions, hence ω can be
set to zero in (36); if that is the case B(l) becomes proportional to the energy derivative of the
Fermi distribution, that in the T → 0 limit becomes of the form δ(E−EF), and the conductivity
is positive definite depending only on those states lying at the Fermi level. On the other hand,
as a result of the periodic structure induced by the microwave radiation, B(l) contains a second
contribution proportional to the derivative of the density of states: d

dE Im Gν(E + lω). Due to
the oscillatory structure of the density of states, this extra contribution takes both positive and
negative values. According to equation (33) this second term (as compared to the first one) is
proportional to the electron mobility, hence for sufficiently high mobility the new contribution
dominates, leading to negative conductance states.

The model is used to test chirality effects induced by the magnetic field. Figure 5 shows
σxx versus ω/ωc plots for various Eω field polarizations with respect to the current. It is
observed that the amplitudes of the σxx oscillations are bigger for linear transverse polarization
as compared to the longitudinal polarization case. Similarly, the oscillation amplitudes are
enhanced for negative circular polarization as compared to the positive circular polarization
results; in particular, NCSs are observed only for negative circular polarization. These results
are understood recalling that for negative circular polarization and ω ≈ ωc the electric field
rotates in phase with respect to the electron cyclotron rotation.
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Figure 4. Longitudinal resistivity as a function of ε = ω/ωc for three values of the electron
mobility: µ = 0.5 × 107 cm2 V−1 s−1 (dotted line), µ = 1.5 × 107 cm2 V−1 s−1 (dashed line),
and µ = 2.5 × 107 cm2 V−1 s−1 (continuous line). The microwave power is given by α = 0.4; the
other parameters have the same values as in figure 1.
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Figure 5. Longitudinal conductance versus ε = ω/ωc for various microwave Eω-field polarizations
with respect to the current. In (a) the continuous and dotted lines correspond to linear transverse
and longitudinal polarizations respectively. (b) shows results for circular polarizations: left hand
(continuous line) and right hand (dotted line). α = 4 and the values of the other parameters are the
same as in figure 1.

Figure 6 illustrates the fact that the strong oscillations in σxx originate from the combined
microwave–modulation effects. The dark contribution, equation (38), shows the expected
σ D

xx ∝ B linear behaviour. The contribution arising solely from the periodic modulation σ M
xx
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Figure 6. Contributions to the total σxx (continuous line) versus ε = ω/ωc: dark contribution
σ D

xx (dashed–dotted line) from equation (38); periodic modulation contribution σ M
xx (dashed line)

obtained from equation (35) when the microwave field is switched off; microwave–modulation
contribution obtained as σ MM

xx −σM
xx . The values of the other parameters are the same as in figure 1.

can be isolated from equation (35) by switching off the microwave field; the dashed line shows
a smooth behaviour. The combined microwave–modulation contribution is obtained from
σ MM

xx − σ M
xx ; the dotted line clearly shows that this contribution includes the main oscillatory

behaviour of the full σxx , furthermore it is the only contribution that becomes negative. Hence,
it is concluded that both the periodic modulation and the microwave radiation are essential in
order to observe the strong σxx oscillations and the NCS.

Next we explore the behaviour of the longitudinal conductivity as a function of the
microwave radiation intensity. As the intensity of the electric microwave field (Eω) is increased,
higher multipole (l) terms need to be evaluated; in the explored regime convergent results
are obtained including terms up to the l = 5 multipole. In figure 7 results are presented for
σxx versus Eω; the selected values of ε = ω/ωc correspond to minima or maxima of σxx in
figure 2. In general, it is observed that for values corresponding to maxima, i.e. ε = j − δ;
j = 1, 2, 3 . . . , σxx remains positive for all microwave field intensities. On the other hand,
the minima corresponding to ε = j + δ; j = 1, 2, 3 . . ., are related to NCSs around a region
|Eω| ∈ [10, 25] V cm−1. Increasing the microwave intensity leads to the disappearance of the
NCSs, except for the first minimum (ε ∼ 1.1).

The non-linear regime with respect to the dc external field can also be explored within
the present formalism. The effect is included using the solution to the classical equations of
motion with both ac and dc electric fields, equation (10). A possible connection between the
observed ZRS in GaAs/AlxGa1−xAs heterostructures [1–4] and the predicted NRS [10–17] was
put forward by Andreev et al [13], noting that a general analysis of Maxwell equations shows
that an NRS induces an instability that drives the system into a ZRS. This mechanism requires
the longitudinal current jxx as a function of Edc to have a single minimum; the system instability
will evolve to the value Edc in which jxx cancel. Returning to the irradiated superlattice
case, in figure 8 it is observed that in general the jxx versus Edc plot has an oscillatory



4042 M Torres and A Kunold

20 40 60 80

Eω (V/cm)

0

0.5

1

1.5

2

(e
2 / h

)σ
xx

ε = 1.1

ε = 2.15
ε = 1.9

ε = 4.15

Figure 7. Longitudinal conductivity as a function of the microwave ac-electric field for various
values of ε = ω/ωc: ε = 1.1 (continuous line), ε = 1.9 (dotted line), ε = 2.15 (dashed line), and
ε = 4.15 (dashed–dotted line). The other parameters have the same values as in figure 1.
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Figure 8. Current–voltage characteristics for the irradiated sample for various values of ε = ω/ωc:
ε = 1.1 (continuous line), ε = 2.1 (dashed line), and ε = 3.15 (dotted line). The microwave power
is given by α = 0.4; the other parameters have the same values as in figure 1.

behaviour, with more than one minimum. Hence the conditions of the Andreev mechanism
do not apply. Consequently, negative conductance states may be probably observed in two-
dimensional superlattices, when exposed to both magnetic and microwave fields.

5. Conclusions

We have considered a model to describe the microwave photoconductivity of a 2DES in
the presence of a magnetic field, and a 2D periodic modulation. We presented a thorough
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discussion of the method that takes into account the Landau and microwave contributions in
a non-perturbative exact way; the periodic potential effects are treated perturbatively. The
formalism exploits the symmetries of the problem: the exact solution of the Landau-microwave
dynamics (7) is obtained in terms of the electric–magnetic generators (5) as well as the solutions
to the classical equations of motion (9). The spectrum and Floquet modes are explicitly worked
out (11). In our model, the Landau–Floquet states act coherently with respect to the oscillating
field of the superlattice potential, that in turn induces transitions between these levels. Based
on this formalism, a Kubo-like formula is provided (35) that consistently takes into account the
oscillatory Floquet structure of the problem.

It is found that both σxx and ρxx exhibit strong oscillations governed by ε = ω/ωc.
The oscillations follow a pattern with minima centred at ω/ωc = j + 1

2 (l − 1) + δ, and
maxima centred at ω/ωc = j + 1

2 (l − 1) − δ, where j = 1, 2, 3 . . . , δ ≈ 1/5 and l is
the dominant multipole contribution. NRSs develop for sufficiently strong microwave power
(figure 2), in a narrow window of values of the lattice parameter (a ∼ lB) (figure 3), and
for high electron mobility samples (figure 4). The explanation for the NRSs can be traced
down to equations (35) and (36); the longitudinal photoconductivity contains a new contribution
proportional to the derivative of the density of states: d

dE Im Gν(E + lω). Due to the oscillatory
structure of the density of states this extra contribution takes both positive and negative values.
This term is proportional to the electron mobility, hence for sufficiently high mobility the new
contribution dominates, leading to negative conductivity states. Unlike the semiclassical origin
of magnetoresistance oscillations observed in an antidot array for commensurate values of the
ratio Rc/a [25], these conductance oscillations have a quantum origin and would only appear
in a narrow window of values of a, around a ∼ lB .

In conclusion, it is proposed that the combined effect of periodic modulation,
perpendicular magnetic field, plus microwave irradiation of 2DES gives rise to interesting
oscillatory conductance phenomena, with the possible development of NCSs and NRSs.
One should stress that according to our results the production of NRSs requires ultra-clean
samples with electron mobilities of order µ ≈ 2.5 × 107 cm2 V−1 s−1 (see figure 4). The
electron mobilities in the fabricated arrays of periodic scatterers so far [24, 25] are µ ≈
2.5 × 106 cm2 V−1 s−1; consequently, an increase in the electron mobilities of these kinds
of experimental set-ups by an order of magnitude would be required in order to observe the
phenomena described in this work.
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Appendix A. Dark and Hall conductivities

In section 3 the method to obtain the final expression for the modulation–microwave induced
conductance equation (35) was explained in detail. Working along a similar procedure, the
expressions for the remaining conductivities are worked out from equations (31) and (32). First
we quote the longitudinal dark conductance

σ D
xx = e2ω2

c

π h̄

∑

µ

µ

∫
dE Im Gµ(E)

d f

dE Im Gµ(E + ωc), (38)
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whereas the Hall conductance reads

σ D
xy = e2ω2

c

π h̄

∑

µ

µ

∫
dE Im Gµ(E)

[
f
(Eµ − ωc

)− f (E)
]

P
1

(E − Eµ + ωc
)2

, (39)

where P indicates the principal-value integral. The final result for the MM assisted longitudinal
conductivity was quoted in equation (35). The MM induced Hall conductivity is calculated to
give

σ (MM)
xy = e2l4

B

π h̄

∫
dE
∑

µν

∑

l

∑

mn

Im Gµ(E)
[

f (Eν) − f (E)
]

T l
mn|Jl(|�mn|)Vmn Dµν(q̃mn)|2,

(40)

were the function T l
mn is defined as

T l
mn = ω3

c

(
(q(x)

m )2 + (q(y)
n )

)2

(E + ωl − Eν)|(E + ωl − Eν)2 − ω2
c |2

. (41)

Appendix B. Microwave-driven distribution function

Within the time relaxation approximation the Boltzmann equation can be written as

∂ f

∂ t
+ ∂ f

∂p
· (eE + ev × B) = − f − fF

τtr
− f − fF

τin
, (42)

where fF is the Fermi–Dirac distribution and we distinguish between the elastic rate τ−1
tr

and inelastic or energy relaxation rate τ−1
in . As already mentioned, we assume the validity

of the following conditions: τω � τtr � τin, and certainly the inelastic processes can
be safely ignored. Furthermore, due to the ac electric field (3), the LHS of the previous
equation is estimated to be of order f/τω; hence, in a first approximation the elastic scattering
contribution can also be neglected. The resulting Vlasov equation has the exact solution
f (p, t) = fF (p − m∗v(t)), where the velocity v(t) ≡ (

η̇1, ζ̇1
)

solves exactly the same classical
equations of motion that follow from (9), and the initial condition is selected as f → fF as
the external electric field is switched off. In particular, it is verified that m∗|v(t)|2/2 = Erad

coincides with the Floquet energy shift produced by the microwave radiation (11). The
steady-state distribution, evaluated at the Landau energy E = E (0)

µ , is obtained by averaging
fF (p − m∗v(t)) over the oscillatory period

〈 fF〉 = 1

τω

∫ τω

0
fF

(
E (0)

µ + Erad + 2 cos ωct
√
E (0)

µ Erad

)
dt . (43)

In general, it is verified that Erad � E (0)
µ , thus expanding to first order one finds 〈 fF〉 ≈

fF
(E (0)

µ + Erad
) = fF(Eµ). Hence, it is verified that a rapid relaxation of the Fermi distribution

to the quasi-energy states is a reasonable assumption. The arguments presented in this appendix
have been introduced by Mikhailov [36] in order to explore the possibility that the microwave
radiation leads to a population inversion; however, it is concluded that it would require a rather
high microwave intensity Erad > EF.

References

[1] Zudov M A, Du R R, Simmons J A and Reno J L 2001 Phys. Rev. B 64 201311(R)
[2] Zudov M A, Du R R, Pfeiffer L N and West K W 2003 Phys. Rev. Lett. 90 046807
[3] Mani R G, Smet J H, von Klitzing K, Narayanamurti V, Johnson W b and Umansky 2002 Nature 420 646

http://dx.doi.org/10.1103/PhysRevLett.90.046807
http://dx.doi.org/10.1038/nature01277


Photoconductivity of modulated 2DES in magnetic field 4045

Mani R G, Smet J H, von Klitzing K, Narayanamurti V, Johnson W B and Umansky V 2004 Phys. Rev. Lett.
92 146801

[4] Mani R G 2004 Physica E 22 1
[5] Dorozhkin S I 2003 JETP Lett. 77 577
[6] Willett R L, Pfeiffer L N and West K W 2004 Phys. Rev. Lett. 93 026804
[7] Zudov M A 2004 Phys. Rev. B 69 041304(R)
[8] Kovalev A E, Zvyagin S A, Bowers C R, Reno J L and Simmons J A 2004 Solid State Commun. 1130 379
[9] Studenikin S A, Potemski M, Sachrajda A, Hilke M, Pfeiffer L N and West K W 2004 Preprint

cond-mat/0404411
[10] Ryzhii V I 1970 Sov. Phys.—Solid State 11 2078
[11] Ryzhii V I and Suris R 2003 J. Phys.: Condens. Matter 15 6855
[12] Durst A C, Sachdev S, Read N and Girvin S M 2003 Phys. Rev. Lett. 91 086803
[13] Andreev A V, Aleiner I L and Millis A J 2003 Phys. Rev. Lett. 91 056803
[14] Shi J and Xie X C 2003 Phys. Rev. Lett. 91 086801
[15] Lei X L and Liu S Y 2003 Phys. Rev. Lett. 91 226805
[16] Vavilov M G and Aleiner I L 2004 Phys. Rev. B 69 035303
[17] Torres M and Kunold A 2005 Phys. Rev. B 71 115313
[18] Torres M and Kunold A 2005 Phys. Status Solidi b 71 1192
[19] Dmitriev I A, Mirlin A D and Polyakov D G 2003 Phys. Rev. Lett. 91 226802
[20] Dmitriev I A, Vavilov M G, Aleiner I L, Mirlin A D and Polyakov D G 2005 Phys. Rev. B 71 115316
[21] Robinson J P, Kennett M P, Cooper N R and Fal’ko V I 2004 Phys. Rev. Lett. 93 036804
[22] Weiss D, Klitzing K v, Ploog K and Weimann G 1989 Europhys. Lett. 8 179

Winkler R W, Kotthaus J P and Ploog K 1989 Phys. Rev. Lett. 62 1177
Weiss D, Roukes M L, Menschig A, Grambow P, Klitzing K v and Weimann G 1991 Phys. Rev. Lett. 66 2790

[23] For a review see, Schuster R and Ensslin K 1994 Adv. Solid State Phys. 34 195
[24] Albrecht C, Smet J H, Klitzing K v, Weiss D, Umansky V and Schweizer H 2001 Phys. Rev. Lett. 86 147
[25] Vasiliadou E, Fleischmann R, Weiss D, Heitmann D, Klitzing K v, Geisel T, Bergmann R, Schweizer H and

Foxon C T 1995 Phys. Rev. B 52 R8658
[26] Dietel J, Glazman L I, Hekking F W J and von Oppen F 2005 Phys. Rev. B 71 045329
[27] Gumbs G 2005 Phys. Rev. B 72 125342
[28] Husimi K 1953 Prog. Theor. Phys. 9 381
[29] Kunold A and Torres M 2000 Phys. Rev. B 61 9879
[30] Torres M and Kunold A 2004 Phys. Lett. A 323 2890
[31] Ashby N and Miller S C 1965 Phys. Rev. B 139 A428
[32] Kunold A and Torres M 2005 Ann. Phys. 315 532
[33] Ando T and Uemura Y 1974 J. Phys. Soc. Japan 36 959
[34] Gerhardts R R 1975 Z. Phys. B 21 275

Gerhardts R R 1975 Z. Phys. B 21 285
[35] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[36] Mikhailov S A 2004 Phys. Rev. B 70 165311

http://dx.doi.org/10.1103/PhysRevLett.92.146801
http://dx.doi.org/10.1016/j.physe.2003.11.204
http://dx.doi.org/10.1134/1.1595700
http://dx.doi.org/10.1103/PhysRevLett.93.026804
http://dx.doi.org/10.1103/PhysRevB.69.041304
http://dx.doi.org/10.1016/j.ssc.2004.02.028
http://arxiv.org/abs/cond-mat/0404411
http://dx.doi.org/10.1088/0953-8984/15/40/021
http://dx.doi.org/10.1103/PhysRevLett.91.086803
http://dx.doi.org/10.1103/PhysRevLett.91.056803
http://dx.doi.org/10.1103/PhysRevLett.91.086801
http://dx.doi.org/10.1103/PhysRevLett.91.226805
http://dx.doi.org/10.1103/PhysRevB.69.035303
http://dx.doi.org/10.1103/PhysRevB.71.115313
http://dx.doi.org/10.1002/pssb.200460761
http://dx.doi.org/10.1103/PhysRevLett.91.226802
http://dx.doi.org/10.1103/PhysRevB.71.115316
http://dx.doi.org/10.1103/PhysRevLett.93.036804
http://dx.doi.org/10.1103/PhysRevLett.62.1177
http://dx.doi.org/10.1103/PhysRevLett.66.2790
http://dx.doi.org/10.1103/PhysRevLett.86.147
http://dx.doi.org/10.1103/PhysRevB.52.R8658
http://dx.doi.org/10.1103/PhysRevB.71.045329
http://dx.doi.org/10.1103/PhysRevB.72.125342
http://dx.doi.org/10.1103/PhysRevB.61.9879
http://dx.doi.org/10.1016/j.physleta.2004.01.072
http://dx.doi.org/10.1103/PhysRev.139.A428
http://dx.doi.org/10.1016/j.aop.2004.08.004
http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1007/BF01313308
http://dx.doi.org/10.1007/BF01313309
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/PhysRevB.70.165311

	1. Introduction
	2. The model
	3. Kubo formula for Floquet states
	4. Results
	5. Conclusions
	Acknowledgments
	Appendix A. Dark and Hall conductivities
	Appendix B. Microwave-driven distribution function
	References

